Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens.
نویسندگان
چکیده
Experimental work on the control of photosystem II in the photosynthetic apparatus of higher plants, mosses and lichens is reviewed on a background of current literature. Transmembrane proton transport during photoassimilatory and photorespiratory electron flows is considered insufficient for producing the intrathylakoid acidification necessary for control of photosystem II activity under excessive illumination. Oxygen reduction during the Mehler reaction is slow. Together with associated reactions (the water-water cycle), it poises the electron transport chain for coupled cyclic electron transport rather than acting as an efficient electron sink. Coupled electron transport not accompanied by ATP consumption in associated reactions provides the additional thylakoid acidification needed for the binding of zeaxanthin to a chlorophyll-containing thylakoid protein. This results in the formation of energy-dissipating traps in the antennae of photosystem II. Competition for energy capture decreases the activity of photosystem II. In hydrated mosses and lichens, but not in leaves of higher plants, protein protonation and zeaxanthin availability are fully sufficient for effective energy dissipation even when photosystem II reaction centres are open. In leaves, an additional light reaction is required, and energy dissipation occurs not only in the antennae but also in reaction centres. Loss of chlorophyll fluorescence during the drying of predarkened poikilohydric mosses and lichens indicates energy dissipation in the dry state which is unrelated to protonation and zeaxanthin availability. Excitation of photosystem II by sunlight is not destructive in these dry organisms, whereas photosystem II activity of dried leaves is rapidly lost under strong illumination.
منابع مشابه
The field monitoring of influential biodeteriogenic agents on the historic rock surfaces in Persepolis-UNESCO World Heritage Site
Cultural heritage has always been the focus of many civilizations and therefore, it needs to be preserved for future generations. From prehistoric times, when grandeur and beauty were the aims of architecture, stone was the most widely used durable material. Biodeterioration of the stone monuments, one of the most important causes for the loss of the cultural heritage, is defined as any undesir...
متن کاملProtection of thylakoids against combined light and drought by a lumenal substance in the resurrection plant Haberlea rhodopensis.
BACKGROUND AND AIMS Haberlea rhodopensis is a perennial, herbaceous, saxicolous, poikilohydric flowering plant that is able to survive desiccation to air-dried state under irradiance below 30 micromol m-2 s-1. However, desiccation at irradiance of 350 micromol m-2 s-1 induced irreversible changes in the photosynthetic apparatus, and mature leaves did not recover after rehydration. The aim here ...
متن کاملThermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation.
Seasonal differences have been observed in the ability of desiccated mosses to dissipate absorbed light energy harmlessly into heat. During the dry summer season desiccation-tolerant mosses were more protected against photo-oxidative damage in the dry state than during the more humid winter season. Investigation of the differences revealed that phototolerance could be acquired or lost even unde...
متن کاملOn the Inside Photoprotection in Lichens
Lichens are often found growing on exposed rocks or trees, where they face high levels of irradiation while in the desiccated state. To grow and survive, lichens must resist photodamage while desiccated and resume photosynthesis soon after hydration. Since PSII is often a target of desiccation-induced damage, lichens must render PSII largely inactive and/or minimize the amount of solar radiatio...
متن کاملPhotosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts
As an important successional stage and main type of biological soil crusts (BSCs) in Shapotou region of China (southeastern edge of Tengger Desert), lichen soil crusts (LSCs) often suffer from many stresses, such as desiccation and excess light intensity. In this study, the chlorophyll fluorescence and CO2 exchange in the rehydrated LSCs were detected under a series of photosynthetically active...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 52 363 شماره
صفحات -
تاریخ انتشار 2001